Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice.

نویسندگان

  • C Bai
  • N Fukuda
  • Y Song
  • T Ma
  • M A Matthay
  • A S Verkman
چکیده

The mammalian lung expresses water channel aquaporin-1 (AQP1) in microvascular endothelia and aquaporin-4 (AQP4) in airway epithelia. To test whether these water channels facilitate fluid movement between airspace, interstitial, and capillary compartments, we measured passive and active fluid transport in AQP1 and AQP4 knockout mice. Airspace-capillary osmotic water permeability (Pf) was measured in isolated perfused lungs by a pleural surface fluorescence method. Pf was remarkably reduced in AQP1 (-/-) mice (measured in cm/s x 0.001, SE, n = 5-10: 17 +/- 2 [+/+]; 6.6 +/- 0.6 AQP1 [+/-]; 1.7 +/- 0.3 AQP1 [-/-]; 12 +/- 1 AQP4 [-/-]). Microvascular endothelial water permeability, measured by a related pleural surface fluorescence method in which the airspace was filled with inert perfluorocarbon, was reduced more than 10-fold in AQP1 (-/-) vs. (+/+) mice. Hydrostatically induced lung interstitial and alveolar edema was measured by a gravimetric method and by direct measurement of extravascular lung water. Both approaches indicated a more than twofold reduction in lung water accumulation in AQP1 (-/-) vs. (+/+) mice in response to a 5- to 10-cm H2O increase in pulmonary artery pressure for five minutes. Active, near-isosmolar alveolar fluid absorption (Jv) was measured in in situ perfused lungs using 125I-albumin as an airspace fluid volume marker. Jv (measured in percent fluid uptake at 30 min, n = 5) in (+/+) mice was 6.0 +/- 0.6 (37 degrees C), increased to 16 +/- 1 by beta-agonists, and inhibited to less than 2.0 by amiloride, ouabain, or cooling to 23 degrees C. Jv (with isoproterenol) was not affected by aquaporin deletion (18.9 +/- 2.2 [+/+]; 16.4 +/- 1.5 AQP1 [-/-]; 16.3 +/- 1.7 AQP4 [-/-]). These results indicate that osmotically driven water transport across microvessels in adult lung occurs by a transcellular route through AQP1 water channels and that the microvascular endothelium is a significant barrier for airspace-capillary osmotic water transport. AQP1 facilitates hydrostatically driven lung edema but is not required for active near-isosmolar absorption of alveolar fluid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximal tubule water transport-lessons from aquaporin knockout mice.

THE PROXIMAL TUBULE REABSORBS essentially all the filtered organic solutes, most of the filtered phosphate, 80% of the filtered bicarbonate, and 60% of the filtered sodium chloride. Approximately 70% of the filtered water is also reabsorbed by this segment. Despite these very high rates of proximal tubule solute transport, the osmolality of the luminal fluid decreases by only 5 mosmol/kgH2O fro...

متن کامل

Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration

Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport-related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway ...

متن کامل

Knock-out models reveal new aquaporin functions.

Knockout mice have been informative in the discovery of unexpected biological functions of aquaporins. Knockout mice have confirmed the predicted roles of aquaporins in transepithelial fluid transport, as in the urinary concentrating mechanism and glandular fluid secretion. A less obvious, though predictable role of aquaporins is in tissue swelling under stress, as in the brain in stroke, tumor...

متن کامل

The Isolated Perfused Heart and Its Pioneers

References 1. Chou, C. L, T. Ma, B. Yang, M. A. Knepper, and A. S. Verkman. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am. J. Physiol. 274 (Cell Physiol. 43): C549–C554, 1998. 2. Ma, T., B. Yang, A. Gillespie, E. J. Carlson, C. J. Epstein, and A. S. Verkman. Severely impaired urinary concentrating ability in transgenic mice lacking ...

متن کامل

Lessons on renal physiology from transgenic mice lacking aquaporin water channels.

Several aquaporin-type water channels are expressed in kidney: AQP1 in the proximal tubule, thin descending limb of Henle, and vasa recta; AQP2, AQP3, and AQP4 in the collecting duct; AQP6 in the papilla; and AQP7 in the proximal tubule. AQP2 is the vasopressin-regulated water channel that is important in hereditary and acquired diseases affecting urine-concentrating ability. It has been diffic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 103 4  شماره 

صفحات  -

تاریخ انتشار 1999